Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 130(2): 149-158, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32414665

RESUMO

The hyperthermophilic archaeon Thermococcus kodakarensis can grow on pyruvate or maltooligosaccharides through H2 fermentation. H2 production levels of members of the Thermococcales are high, and studies to improve their production potential have been reported. Although H2 production is primary metabolism, here we aimed to partially uncouple cell growth and H2 production of T. kodakarensis. Additional A1-type ATPase genes were introduced into T. kodakarensis KU216 under the control of two promoters; the strong constitutive cell surface glycoprotein promoter, Pcsg, and the sugar-inducible fructose-1,6-bisphosphate aldolase promoter, Pfba. Whereas cells with the A1-type ATPase genes under the control of Pcsg displayed only trace levels of growth, cells with Pfba (strain KUA-PF) displayed growth sufficient for further analysis. Increased levels of A1-type ATPase protein were detected in KUA-PF cells grown on pyruvate or maltodextrin, when compared to the levels in the host strain KU216. The growth and H2 production levels of strain KUA-PF with pyruvate or maltodextrin as a carbon and electron source were analyzed and compared to those of the host strain KU216. Compared to a small decrease in total H2 production, significantly larger decreases in cell growth were observed, resulting in an increase in cell-specific H2 production. Quantification of the substrate also revealed that ATPase overexpression led to increased cell-specific pyruvate and maltodextrin consumptions. The results clearly indicate that ATPase production results in partial uncoupling of cell growth and H2 production in T. kodakarensis.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Regulação da Expressão Gênica em Archaea , Hidrogênio/metabolismo , Thermococcus/enzimologia , Thermococcus/genética , Carbono/metabolismo , Dosagem de Genes/fisiologia , Regulação da Expressão Gênica em Archaea/genética , Organismos Geneticamente Modificados/metabolismo , Polissacarídeos/metabolismo , Ácido Pirúvico/metabolismo
2.
Sci Rep ; 7(1): 16949, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209094

RESUMO

RecJ was originally identified in Escherichia coli and plays an important role in the DNA repair and recombination pathways. Thermococcus kodakarensis, a hyperthermophilic archaeon, has two RecJ-like nucleases. These proteins are designated as GAN (GINS-associated nuclease) and HAN (Hef-associated nuclease), based on the protein they interact with. GAN is probably a counterpart of Cdc45 in the eukaryotic CMG replicative helicase complex. HAN is considered mainly to function with Hef for restoration of the stalled replication fork. In this study, we characterized HAN to clarify its functions in Thermococcus cells. HAN showed single-strand specific 3' to 5' exonuclease activity, which was stimulated in the presence of Hef. A gene disruption analysis revealed that HAN was non-essential for viability, but the ΔganΔhan double mutant did not grow under optimal conditions at 85 °C. This deficiency was not fully recovered by introducing the mutant han gene, encoding the nuclease-deficient HAN protein, back into the genome. These results suggest that the unstable replicative helicase complex without GAN performs ineffective fork progression, and thus the stalled fork repair system including HAN becomes more important. The nuclease activity of HAN is required for the function of this protein in T. kodakarensis.


Assuntos
Proteínas Arqueais/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Thermococcus/genética , Proteínas Arqueais/genética , Dano ao DNA , DNA Arqueal/genética , DNA Arqueal/metabolismo , Proteínas de Escherichia coli/genética , Exodesoxirribonucleases/genética , Mutação , Filogenia , Thermococcus/metabolismo
3.
Nucleic Acids Res ; 45(18): 10693-10705, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977567

RESUMO

The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells.


Assuntos
Proteínas Arqueais/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Thermococcus/enzimologia , Thermococcus/genética , Proteínas Arqueais/genética , Exodesoxirribonucleases/genética , Deleção de Genes , Metais , Thermococcus/crescimento & desenvolvimento , Thermococcus/metabolismo , Raios Ultravioleta
4.
Appl Environ Microbiol ; 83(15)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28550062

RESUMO

Thermococcus kodakarensis is a hyperthermophilic archaeon that harbors a complete set of genes for chitin degradation to fructose 6-phosphate. However, wild-type T. kodakarensis KOD1 does not display growth on chitin. In this study, we developed a T. kodakarensis strain that can grow on chitin via genetic and adaptive engineering. First, a chitinase overproduction strain (KC01) was constructed by replacing the chitinase gene promoter with a strong promoter from the cell surface glycoprotein gene, resulting in increased degradation of swollen chitin and accumulation of N-,N'-diacetylchitobiose in the medium. To enhance N-,N'-diacetylchitobiose assimilation in KC01, genes encoding diacetylchitobiose deacetylase, exo-ß-d-glucosaminidase, and glucosamine-6-phosphate deaminase were also overexpressed to obtain strain KC04. To strengthen the glycolytic flux of KC04, the gene encoding Tgr (transcriptional repressor of glycolytic genes) was disrupted to obtain strain KC04Δt. In both KC04 and KC04Δt strains, degradation of swollen chitin was further enhanced. In the culture broth of these strains, the accumulation of glucosamine was observed. KC04Δt was repeatedly inoculated in a swollen-chitin-containing medium for 13 cultures. This adaptive engineering strategy resulted in the isolation of a strain (KC04ΔtM1) that showed almost complete degradation of 0.4% (wt/vol) swollen chitin after 90 h. The strain produced high levels of acetate and ammonium in the culture medium, and, moreover, molecular hydrogen was generated. This strongly suggests that strain KC04ΔtM1 has acquired the ability to convert chitin to fructose 6-phosphate via deacetylation and deamination and further convert fructose 6-phosphate to acetate via glycolysis coupled to hydrogen generation.IMPORTANCE Chitin is a linear homopolymer of ß-1,4-linked N-acetylglucosamine and is the second most abundant biomass next to cellulose. Compared to the wealth of research focused on the microbial degradation and conversion of cellulose, studies addressing microbial chitin utilization are still limited. In this study, using the hyperthermophilic archaeon Thermococcus kodakarensis as a host, we have constructed a strain that displays chitin-dependent hydrogen generation. The apparent hydrogen yield per unit of sugar consumed was slightly higher with swollen chitin than with starch. As gene manipulation in T. kodakarensis is relatively simple, the strain constructed in this study can also be used as a parent strain for the development and expansion of chitin-dependent biorefinery, in addition to its capacity to produce hydrogen.

5.
Extremophiles ; 21(1): 27-39, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27738851

RESUMO

The maturation of [NiFe]-hydrogenases requires a number of accessory proteins, which include hydrogenase-specific endopeptidases. The endopeptidases carry out the final cleavage reaction of the C-terminal regions of [NiFe]-hydrogenase large subunit precursors. The hyperthermophilic archaeon Thermococcus kodakarensis harbors two [NiFe]-hydrogenases, a cytoplasmic Hyh and a membrane-bound Mbh, along with two putative hydrogenase-specific endopeptidase genes. In this study, we carried out a genetic examination on the two endopeptidase genes, TK2004 and TK2066. Disruption of TK2004 resulted in a strain that could not grow under conditions requiring hydrogen evolution. The Mbh large subunit precursor (pre-MbhL) in this strain was not processed at all whereas Hyh cleavage was not affected. On the other hand, disruption of TK2066 did not affect the growth of T. kodakarensis under the conditions examined. Cleavage of the Hyh large subunit precursor (pre-HyhL) was impaired, but could be observed to some extent. In a strain lacking both TK2004 and TK2066, cleavage of pre-HyhL could not be observed. Our results indicate that pre-MbhL cleavage is carried out solely by the endopeptidase encoded by TK2004. Pre-HyhL cleavage is mainly carried out by TK2066, but TK2004 can also play a minor role in this cleavage.


Assuntos
Proteínas Arqueais/genética , Endopeptidases/genética , Hidrogenase/metabolismo , Processamento de Proteína Pós-Traducional , Thermococcus/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Endopeptidases/metabolismo , Hidrogenase/química , Hidrogenase/genética , Multimerização Proteica , Proteólise , Thermococcus/enzimologia
6.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 6): 427-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27303894

RESUMO

The TK2203 protein from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (262 residues, 29 kDa) is a putative extradiol dioxygenase catalyzing the cleavage of C-C bonds in catechol derivatives. It contains three metal-binding residues, but has no significant sequence similarity to proteins for which structures have been determined. Here, the first crystal structure of the TK2203 protein was determined at 1.41 Šresolution to investigate its functional role. Structure analysis reveals that this protein shares the same fold and catalytic residues as other extradiol dioxygenases, strongly suggesting the same enzymatic activity. Furthermore, the important region contributing to substrate selectivity is discussed.


Assuntos
Oxigenases/química , Thermococcus/química , Sequência de Aminoácidos , Cristalografia por Raios X , Conformação Proteica
7.
Front Microbiol ; 6: 847, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379632

RESUMO

The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw(-1) h(-1) was observed at a dilution rate of 0.31 h(-1). We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h(-1), the SHPR was 36.2 mmol H2 g-dcw(-1) h(-1), corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h(-1) or 1.07 h(-1) resulted in a SHPR of 120 mmol H2 g-dcw(-1) h(-1), which is one of the highest production rates observed in microbial fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...